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Vortex-Induced Vibrations of  a Circular Cylinder 
at Low Reynolds Numbers 

Minhyung Lee*, Sung-Yeoul Lee 
School of  Mechanical and Aerospace Engineering, Sejong University, 

Seoul 143- 747, Korea 

The vortex-induced vibrations of a circular cylinder at low Reynolds (Re) numbers are si- 

mulated by applying a method of the two-dimensional computational fluid dynamics coupled 

with the structural dynamics based on the multi-physics. The fluid solver is first tested on the 

case of a fixed cylinder at Re~160,  and shows a good agreement with the previous high- 

resolution numerical results. The present study then reports on the detailed findings concerning 

the vibrations of  an elastic cylinder with two degrees of  translational freedom for a number of  

cases in which Re is fixed at 200, a reduced damping parameter Sg----0.01, 0.1, 1.0, 10.0 and the 

mass ratio M *=1,  10. 
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1. Introduction 

All structures under the influence of fluid can 

experience deformation under static or dynamic 

loads. When the deformation is caused by fluid 

around a structure, it causes changes in dynamic 

load, which leads to further deformation and so 

on. This is because the fluid flow depends on the 

geometry of  the structure and the orientation of 

the various structural components. These interac- 

tions can develop into complicated vibrations of 

the structure and eventually, structural damage 

may occur under to certain unfavourable condi- 

tions. Parkinson (1989) provided some compre- 

hensive reviews on the fluid-structure interac- 

tion problems. Among problems associated with 

fluid-structure interactions, the vortex-induced 

vibration of a circular cylinder has drawn atten- 

tion for many years due to its strong vortex 

shedding. For example, it can cause vibrations 
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in heat exchanger tubes, it is important to the 

design of civil structures such as bridges, as well 

as the design of ocean structures. The practical 

significance of vortex-induced vibration has led 

to numerical (Williamson, 1996) and experiment- 

al studies (West and Apelt, 1997), many of which 

have initially concentrated on rigid structures in a 

cross flow, and have then progressed into elastic 

structures because of their growing importance in 

many engineering fields. 

It is known that the cross flow vibration am- 

plitude has a strong relationship with the phase 

difference between the lift force and the cylinder 

motion (Zhou et al., 1999). As Griffin (1992) 

derived from a series of  data, the vibration am- 

plitude depen~ts on a reduced damping parame- 

ter, S g = 8 ~ S t 2 a M  *. Here, St=fsD/U** is the 

Strouhal number, M * = m / p D  z the mass ratio, a 

the damping factor in the structural dynamics 

equations, D the cylinder diameter, U~ the un- 

disturbed freestream velocity, fs the vortex shed- 

ding frequency, m the mass per unit length of  the 

cylinder, and p the fluid density. 

Although there is a need to improve our know- 

ledge of the basic flow phenomena and the inter- 

related structural behaviours as well, much less 

numerical work has been carried out due to the 
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complex multi-physics associated with the pro- 

blems. In recent years, however, substantial pro- 

gress has been made in the development of an 

improved understanding of unsteady fluid dyna- 

mics and structural dynamics. The computational 

methods for unsteady fluid dynamics have been 

developed based on Eulerian Navier-Stokes for- 

mulation of fluid dynamic equations in the time 

domain. On the other hand, the structural side of 

computational methods has evolved by using the 

finite element method based on the Lagrangian 

formulation. Since these methods are firmly esta- 

blished and widely used in practice, it is wise to 

take full advantage of the developments in both 

fields by coupling the fluid and structural solvers. 

This partitioned analysis for fluid structure inter- 

action provides an efficient and modular way to 

deal with fluid-structure interaction problems 

treated in the current study. 

Slaouti and Stansby (1994) analysed the force 

and free vibration of a flexible circular cylinder 

using the vortex-in-cell (VIC) method. Their 

analysis was carried out for a fixed value of Sg 

and M*. For the free vibration case, only the 

time history results of the lift and drag coefficients 

are provided. More recently, Zhou et a1.(1999) 

also studied the vortex induced vibrations of an 

elastic circular cylinder with two-degrees of free- 

dom using the same VIC discrete vortex method 

(Graham, 1988). In the present approach, the 

code is structured in such a manner that the fluid 

and the structure solvers can be modelled se- 

parately by using the domain decomposition ap- 

proach, so that the interaction between the fluid 

and the structure can be properly accounted for. 

In this paper, an in-depth analysis of the effect 

of vortex shedding behind the cylinder on the 

vibrations of an elastic cylinder is provided. The 

present work focuses on the development of the 

analysis method for the fluid-structure interac- 

tions rather than on the enhancement of the fluid 

solver. 

2. Numerical  Approach 

The flow analysis and the structural response 

are coupled in the time marching process. The 

instantaneous values of forces from the unsteady 

flow solution are used in a simultaneous solu- 

tion of the structural solution. As an implicit 

system needs to be solved iteratively at each time 

step for the flow equations, the structure equa- 

tions can be coupled fully with the flow equation 

without ony time delay. 

2.1 Fluid model 

The physical problem under consideration is 

that of incompressible viscous flow and the ma- 

thematical model used is the two-dimensional 

Navier-Stokes equations. The equations gover- 

ning the flow field are continuity and momentum 

equations. When the computational domain mo- 

ves as a function of time, the grid velocity vg is 

involved and should be included in discretizing 

the governing equations. The integral form of the 

governing equations can be written as, 

d fy +fsOl -   . ds:o Ill dt 

d ~p(~d~+ fspqb(v-v,) .nds dt (2) 
= fsTV(9"ndS + ~q,dQ 

where Q is an arbitrary moving volume and S 

is the surface area. ~b represents the conserved 

property per unit mass, and 7V~b and q¢ are the 

diffusive flux and source terms, respectively. 

When the control volume moves, the space 

conservation law (SCL) has to be satisfied. This 

law relates the rate of change of CV volume with 

its surface velocity and expressed as, 

The equations are solved by using the finite vol- 

ume (FV) method, and the solution domain has 

been divided into a finite number of control vol- 

umes (CV) that can be of any shape. 

The process of numerical analysis begins with 

discretization of the differential equations that 

results in algebraic equations. The effective dis- 

cretization method is required to reduce the errors 

associated with it. In this study, the central dif- 

ference scheme (CDS) which is one of the linear 
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interpolation methods is used. The midpoint  rule 

is used to approximate of both the surface and 

volume integrals. The unknown integrands of the 

convective and diffusive terms at the cell-face 

centre have to be interpolated from the CV centre. 

Therefore, interpolation and numerical differen- 

tiation have to be used to express the cell-face 

values of  variables and their derivatives through 

the nodal values. The cell-face values of  the vari- 

ables are approximated by using a linear inter- 

polation given by 

where the linear interpolation factor Ae is defined 

a s ,  

2~_ x . - x ~  (5) 
Xg -- Xe 

Subscripts e, P and E represent the midpoint  of  

east cell-face, CV centre node and CV centre 

node of east cell, respectively. Eq. (3) is a se- 

cond-order  approximation at mid-point  location. 

However, in the case of non-uniform mesh, the 

mid-point  may lay off some position, and the 

second-order  accuracy cannot be achieved. Thus, 

the grid quality can be analysed by comparing 

position vectors of  the mid-point  and cell-faces. 

The second-order  accuracy can be restored by 

adding a correction term as follows, 

~b,~ ~be,+ (V¢) e" ( r e - -  re)  (6) 

where re and re, are the position vectors. The use 

of the CDS is widely accepted due to its simplicity 

with reasonable accuracy. The main cause of the 

truncation error is more closely associated with 

the mesh density. 

The established SIMPLE algorithm is used to 

solve the pressure-velocity coupling. This is a 

t ime-marching procedure that starts the process 

with a guessed pressure field. The linearized 

momentum equations are solved in each time step, 

and the mass conservation is imposed on the new 

velocities by applying a velocity correction that is 

related to the gradient of the pressure correction. 

2.2 Structural model 
Two-dimensional  structural model is develop- 

ed to simulate the motion of  the elastic cylinder 

under dynamic loading. It is assumed that the 

circular cylinder is mounted as a spring-mass-  

damper system, which represents the situation at 

a section of  a long cylindrical structure at the 

location of  the maximum amplitude of  the vibra- 

tion. The equations of motion for the cylinder 

displacement can be expressed as, 

dZx ~-2aa~dx F ( t )  (7) 
dt 2 m 

where ~ o n = ~ / m  =27rfn is the angular natural 

frequency of cylinder, fn the natural frequency 

of  the cylinder, z = X i +  Yj,  X and Y are the 

instantaneous displacements of  the cylinder in the 

x -  and y-direct ions,  respectively, k the rigidity of  

the cylinder, and F ( t )  the induced force. Dimen- 

sionless form of  the equation of  motion respect to 

the cylinder diameter can be written as 

d2~ ' , f .  d~r 2 , f n  - C/ 
+4a~rSt ~s* +( ~rSt f :  ) X = ~ i  - (8) dr ~ dr 

where ~ = x / D ,  r = tU®/D, and f *  is the vortex- 

shedding frequency of the rigid cylinder. Note 

that the Strouhal number St* is obtained for 

the rigid cylinder. The applied force coefficient 

is C : = 2 F ( t )  /pDUZ~. 
The force on the cylinder is calculated by in- 

tegrating the pressure and the wall shear stress 

around the cylinder surface. For  the total force 

F = F x i + F y j ,  as shown in Fig. 1, the drag and 

lift coefficients are given by 

Ca = 2Fx 2Fy 
pDU2 ~ and C~= pDU2 ~ (9) 

The equations of motion can then be solved with 

F y  "" " 

Fig. 1 Loading lift and drag forces 
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a numerical integration scheme. In the present 

analysis, the direct integration method based on 

linear variation of acceleration is employed to 

find the dynamic responses of the system in the 

time domain. The response solution is obtained 

by using a step-by-step time integration finite 

difference approach. This method is conditionally 

stable. A Domain decomposition approach is ap- 

plied for the coupling of the fluids and structures. 

The data that need to be transfered for this ap- 

proach are dynamic loads and position of the 

elastic cylinder. The mutual time step is deter- 

mined from the stability requirements of both the 

fluid and the structure. The implied time step 

restriction on the structure scheme is implied: 

Atc~ = Tn/rc, where Zn is the smallest natural 

time of period. In our calculations, the largest 

frequency considered is 2zeSt* (fn/f~) = (2.0x 

3.1415 x0.185 x5.02) =5.83. The shortest period 

is 1/5.83=0.171. Hence, the critical time step is 

0.171/n'=0.055. On the other hand, the conver- 

gence of the fluid solver for the cortex-shedding 

frequencies was obtained at dtUo,/D<O.03= r <  

0.03 (Park et al., 1998). The time step required to 

obtain accurate results for structural response 

solution was in general found to be larger than 

the maximum time step needed for the flow solver. 

Therefore, the time step selected is drawn from the 

critical time step of the fluid solver. 

3. R e s u l t s  

3.1 Rigid cylinder Fig. 2 
In order to verify the ability of the numerical 

computation to accurately resolve unsteady flow 

and its associated phenomena such as vortex shed- 

ding, the flow past a fixed circular cylinder is 

analysed first. The computational domain used 

is - -  50D < x < 50D and -- 50D < y < 50D, where 

the origin corresponds to the centre of the cylin- 

der. As shown in Fig. 2, the grid size of 313 X 169 

is created with O-mesh generation and 313 points 

are placed on the cylinder surface for sufficient 

resolution of the flow pattern close to the cylin- 

der. Six test cases are examined out at Re<200. 

For all cases investigated in this study, the time 

step AtU®/D was set to 0.02. About 5 iterations 

per time step were required for convergence. The 

calculation usually took 44 hours on a 2 GHz 

personal computer (PC). 

Figure 3 shows the Strouhal number versus the 

Reynolds number. The calculated Strouhal num- 

ber is compared with the correlated equation 

(Williamson, 1998) and the numerical results 

(Park et al., 1998). The number of grid used 

(Park et al., 1998) was 641 X241, which is about 

three times that of the current grid number. The 

results are in good agreement, although some dis- 

crepancy due to the grid density has been ob- 

served at low Re. As shown in Table 1, compari- 

son of the force coefficients obtained from sever- 

al sources also shows discrepancies (Bearman, 

z- 
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Grid size of 313X169 with O-mesh genera- 
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Table 1 Drag and lift coefficients at Re=100, 
Bearman (1998) 

Source 

Arkell & Graham Discrete vortex 

Beaudan & Moin High order finite 
diff. 

Chaplin Spectral-differenec 

Gushchin Finite difference 

Karniadakis Spectral-element 

Kravchenko Galerkin B-spline 

Mittal Spectral method 

Savvides Spectral-difference 

Savvides Spectral-element 

Sherwin Spectral-element 

Younis Finite difference 

Present Calculation 

C D  mean E L  r'm$ 

1.33 0.17 

1.35 0.24 

1.29 0.20 

1.38 n/a 

1.42 0.26 

n/a 0.23 

n/a 0.23 

1.30 0.16 

1.32 0.14 

1.36 0.24 

1.46 0.34 

1.326 0.22 

1998). A set of 12 numerically simulated force 

coefficients at Re=100, are compared and the 

variation of Camean and Clms were found to be 

1.30--1.46 and 0.14~0.34. This indicates that 

a completely converged solution for the current 

problem at hand has not been achieved yet. From 

the test on the grid density, the cross-spanwise 

direction grid refinement is found to have greater 

influence than that of the spanwise direction. 

However, the present study provides a reasonably 

accurate results and demonstraties that the flow 

solver is adequete for to be use in simulation of 

the elastic cylinder. 

A rigid cylinder with Re=200 is simulated 

again because the flow is essentially laminar 

(Slaouti and Stanby, 1992) and three-dimen- 

sional wake transition develops for Re from 190 

up to 260 (Williamson, 1996). Figures 4 and 5 

show the time histories of the lift and drag co- 

efficients and the vortex pattern, respectively. In 

Fig. 4, the lift and drag force coefficients settle 

into a sinusoidal periodic function after the for- 

mation of wake instability leading to vortex shed- 

ding with a mean value of around 1.318 for the 

drag coefficient. In Fig. 5, the vortex pattern in 

the wake at the dimensionless time r =  150 shows 

the well-known Karman vortex street. The Str- 

ouhal number for the rigid cylinder, St* and the 
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Fig. 5 The pressure distribution in the wake, R e :  
200 

mean value of Ca are found to be 0.1928 and 

1.318. These St* and Camean are in excellent 

agreement with the numerical results (Zhou et al., 

1999) of St*=0.1922 and Camean =1.32. There- 

fore, all the expected features of a rigid cylinder 

in a cross-flow are correctly described by the 

proposed method. 

3.2 Elast ic  cylinder with R e = 2 0 0  

Simulations of the elastic cylinder is carried 

out by adopting two-degrees of translational free- 

dom of the structural model for Re=200. The test 

parameters were the mass ratio M*, the reduced 

damping Sg and the frequency ratio fn / f* .  The 

mass ratio M* is set to 1.0 or 10.0, while Sg varies 

from 0.01 to 10.0. These parameters are chosen 

because some experimental and computational 

data are available for comparison. Figure 6 shows 

the maximum cylinder vibration amplitude versus 

Sg at M * :  1.0, which is known as the Griffin plot 

of peak-amplitude. The simulation results were 

also plotted with previous experimental data. The 

extensive amount of data obtained both in air 

and in water was compiled by Griffin (1980) from 
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numerous experimentd investigations. We have 

chosen to replot the data using a linear vertical 

axis. This is because the experimental data reveals 

a large scatter in the amplitude, which is not 

Fig. 6 
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evident in the classical log- log plots. The sim- 

ulation results can predict the attenuation of the 

vibration amplitude as the damping parameter Sg 

guite well. Although it seems that the simulations 

slightly overpredict the cylinder vibration am- 

plitude for higher values of  mass damping, gener- 

ally a good correlation is attained. 

Figure 7 shows the X - Y p h a s e  plots for Sg---- 

0.01, 0.1, 1.0 and 10.0. It clearly shows the cylin- 

der response is a self limiting oscillation with a 

pattern also shown in Figure 8. An increase in 

Sg from 0.01 to 0.1 has little effect on the vibra- 

tion amplitude but a further increase in Sg to 

10.0 from 1.0 creates a sharp drop in the am- 

plitude as predicted in the Griffin plot. The Fig- 

ure 8 pattern exists in all cases in which the 

amplitude decreuae as Sg increases and the equi- 

librium position of  the cylinder in the streamwise 

direction is no longer at zero due to the mean 

drag force. This position also varies as the value 

of  Sg changes. 
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Figure 8 shows the time histories of the drag 

and lift coefficients together with the cross-flow 

displacement of the cylinder for Sg=0.01 and 

M * =  1.0. In order to have a clear picture of vor- 

tex induced response, the frequency ratio f,,/f~ 
is chosen to vary from 0.65 to 5.20 but most 

values is concentrated around fn / f~=l  as this 

region was expected to have significant flow struc- 

ture interactions. It can be observed that the time 

histories of the force coefficients are similar to 

that of  the rigid case as the frequency ratio fn/f* 
increases. For the case of fn/f* =5.20,  there was 

almost no oscillation in both directions as the 

equilibrium position in the streamwise direction 

is about 0.017 and the maximum amplitude of  

the cross-flow direction is about 0.009. In other 

words, the elastic cylinder displaces less oscilla- 

tory movement as the stiffness of structure increas- 

es, as expected. The equilibrium position in the 

streamwise direction is varied from X/D=I .05  
for fn/f* =0.65 through X/D=0.55 for fn/f~ = 

1.16 to X/D=O.OI7 for f,~/f*=5.2. However, the 

maximum amplitude of oscillation was around 

0.1 i.e., around 1/10 of the maximum amplitude 

in the cross flow direction, and the mean drag 

increases with increase in the amplitude. These 

oscillations in both directions for the flexible 

cases indicate that the vortex structure in the wake 

experiences dramatic changes in flow compare 

with the rigid or less flexible cylinder cases• The 

beating pattern appearing at fn/f* = 1.73 has two 
distinctive frequencies, and this clearly shows the 

significance of the elastic effect, as shown in the 

figure. It is also interesting to note that the phase 

between the lift force and the displacement chan- 

ges from the 'out-of-pahse' to 'in-phase' mode as 

the frequency ratio fn/f~ varies from smaller 

than 0.87 to greaterthan 0.87. 

The time histories of  the drag and lift coeffi- 

cients together with the cross-flow displacement 

of the cylinder for S g =  1.0 with M * =  1.0 is shown 

in Fig. 9. It can be seen that the amplitude of 
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the response and the equilibrium position in 

the streamwise direction decrease as Sg and M* 
values are increased and the beating pattern ob- 

served for lower Sg values disappears. These be- 

haviors are expected as the increase in Sg and M* 

effectively increases the damping and reduces the 

applied load on the cylinder structure. Also to be 

noticed is that the phase shift pattern changes case 

by case. However the out-of-phase  pattern occurs 

at lower values of f n / f *  and vise versa at higher 

values. 

Figures 10, 11, 12 and 13 show the results of 

the mean drag coefficient C a  mean, the root mean 
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fn/fs*, respectively. The mean drag coefficient 

and the root mean square values of the lift co- 

efficient for M *=1 reach their maximum value 

at the frequency ratios of fn/fs*~l.3 and 1.49, 

respectively. Then these parametric values are con- 

verge into those for the rigid cylinder case as the 

frequency ratio f n / f*  increases. For the M* = 10 

case, the maximum values for Carmean and Ctrm~ 

occur at f n / f * ~ l . 0 4  and 1.16, respectively. In 

general, the most excited vibration would be ex- 

pected to occur when the vibration frequency of 

the structure is close to the natural frequency of 

the fluid. 

4. Conclusions 

The vortex-induced vibrations of an elastic 

circular cylinder are investigated with the un- 

steady incompressible Navier-Stokes solver cou- 

pled with the structural dynamics code using the 

multi-physics approach. The results for a fixed 

cylinder are showed an encouraging consistency 

with the previous high-resolution results obtain- 

ed by Park et a1.(1998). Based on this valida- 

tion, an elastic cylinder case is simulated with 

a two-degrees-of-translational-freedom in struc- 

tural model. The elastic cylinder cases are inves- 

tigated with Re----200 as this retains the fea- 

tures of the laminar flow and the two-dimen- 

sional feature in the wake. The response of the 

cylinder, the induced forces, the vortex-shedding 

frequency and the vortex structure in the wake are 

examined in detail. 

The amplitude of the transverse (cross flow) 

vibration can be as high as 0.6D for the cases 

considered the current study. The mean drag force 

also increases substantially compared to the fixed 

cylinder case. The limit cycle oscillation of the 

cylinder is clearly captured and the interaction 

between the fluid and the structure is examined. It 

is also observed that the vibration depends 

strongly on the reduced damping parameter Sg 

and the mass ratio M*. 
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